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• Standard eddy diffusivity model and Boussinesq approximation in RANS 
equation

• Researchers often ask: “how to tune                 ?”

• We study: “what should the entire operator look like?”

• Motivations: the standard model is not truly predictive for many practical 
flows

Motivations



Simpler Question: Scalar Transport

• Instantaneous equation of passive scalar transport (Microscopic)

• Averaged equation (Macroscopic)

• Standard eddy diffusivity model
Linear



Macroscopic Forcing Method (MFM)

• Investigate response to forcing 

• survives in averaging the equation

• Perform many DNSs to compute      in response to different 

• Obtain a linear system              and rearrange to obtain

• Expensive! 

Condition:



Example: A 2D Parallel Flow (1/6)

• Steady, parallel, velocity field

• Example of 2D solution for    (“expensive DNS”) 

• Quantity of interest

• What 1D equation (“RANS”) can directly predict    ?
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Example: A 2D Parallel Flow (2/6)

• Dimensionless Microscopic Equation 

• Approximate model using method of G. I. Taylor (1953)

macroscopic diffusivity = Deff=1/2
valid for large-scale 
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Example: A 2D Parallel Flow (3/6)

• MFM analysis: 
• Add forcing to the governing equation

• For different    find the linear response 

• Homogeneity allows analysis in Fourier space 



Example: A 2D Parallel Flow (4/6)

• MFM result (steady limit, ω=0) 
• Remember Taylor/Boussinesq prediction  
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Example: A 2D Parallel Flow (5/6)

• Macroscopic operator (steady limit, ω=0) 

• Fitted operator: 

Fitted expression

• Not a number but an operator 
• Suppressed in small-scale limits
• Non-local operator



Outline 
• Go back and relax simplifications 

• Unsteady problems

• Molecular diffusivity active in all directions

• Unsteady 3D flows 

• Extension from scalar transport to Navier-Stokes 

• Extension to non-homogeneous flows

• Computational cost 

• An example incorporating all of the above 



Example: A 2D Parallel Flow (6/6)

• Solution to the unsteady problem 

• Evaluation of performance 

real part fitted operator 



Extension to Turbulent Flows

• What will happen if velocity is 3D, unsteady, and turbulent?
• Test case: Homogeneous Isotropic Turbulence (HIT) at Reλ=40

Fitted operator: 



MFM for Navier-Stokes (1/2)

• First obtain DNS (or measurement) of flow field

• Nonlinearity and interpretation of nonlinear term 
• Apply MFM to a generalized momentum transport equation (GMT)

• Linear system, (N.S. is its special case)
• Operator dependent on flow 



MFM for Navier-Stokes (2/2)

• Example: MFM + GMT applied to HIT  (Reλ=40)

• Turbulent Schmidt number ScT=D0
v/D0

c=0.5

•

Fitted operator: 



Impact on Prediction of Practical Flows

• Can the operator already obtained improve prediction of 
mean velocity profile? 
• Example: turbulent round jet à self-similar solution 
• Use Prandtl Mixing Length Model to determine D and l
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Extension to Inhomogeneous Flows (1/2)
• Example: transport between two walls

• Left/right BC: Dirichlet condition  
• Top/bottom: periodic condition 
• Averaging defined in x2

• Steady limit 
• Macroscopic model is 1D 

• MFM Result: 

: discrete macroscopic operator D = Eddy diffusivity operator
is a convolution kernel ! 



Most General Form of Eddy Diffusivity 

• Scalar transport 

• Momentum transport 

• MFM allows precise measurement of D
• Expense?



A fast method for computation of kernel 
moments 

Inverse MFM (not presented) 
Can obtain moments of D at affordable cost 



Boussinesq Approximation 

If kernel width ~ eddy size << macroscopic length

è Provides a quantitative framework for assessment of the 
Boussinesq approximation 



Example Application
flow field DNS solution (s=1) macroscopic field 

DNS

MFM D0

MFM D2 (non-local)

Can construct approximate kernels 
by matching higher moments of D(x1,y1)  

= 0 
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IMFM Applied to Turbulent Channel Flow 
at Reτ=180 (1/3) 

• Only 9 DNSs required to compute D0
jilk

• All 81 coefficients computed versus distance from wall
• This is the eddy-diffusivity tensor !

– Represents truncated operator up to the leading (local) term

– Analysis of non-local terms in progress 

• Example profile 
(one out of 81 profiles) 

• MFM can measure eddy diffusivity
on the centerline !
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IMFM Applied to Turbulent Channel Flow 
at Reτ=180 (2/3) 

• Leading order model (D0) is sufficient for RANS prediction of 
channel flow (nonlocal effects not dominant for this example)

• Error due to neglecting of non-local effects ~ 1.5% (converged)  
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IMFM Applied to Turbulent Channel Flow 
at Reτ=180 (3/3) 

• Eddy diffusivity is highly anisotropic (non-Boussinesq) 
• Let’s examine streamwise momentum equation

• Boussinesq approx. prescribes D0
1111=D0

2121

• Our measurement shows D0
1111 is ~16 times larger than D0

2121!

• In parallel flows (e.g. channel) the difference does not matter 
• What about onset of separation? 



Final Words 

• We developed a rheometer for turbulent flows 

• Standard rheometer for laminar flow measures momentum 
diffusivity 
• Assumes the underlying Brownian motion (transporter of 

momentum) remains unaffected by rheometry 
• MFM honors this condition for turbulent flows 

• MFM informs closure model forms:
à anisotropy, non-locality 

› Ref: Mani, A. and Park, D., “Macroscopic forcing method: a tool for turbulence 
modeling and analysis of closures,” Physical Review Fluids

momentum transporter of momentum 



Thank you


